电气专业设计计算

wendalili 发表于 2021-10-21 11:05:05 | 打印

主要内容:

  1. 厂用电率计算

  2. 厂用电负荷计算方法

  3. 变压器容量选择

  4. 电压调整计算

  5. 母线电压偏移计算

  6. 电动机起动及自起动电压校验

  7. 成组电动机自起动时厂用母线电压的校验

  8. 电动机容量选择计算

  9. 低压电器选择及校验条件

  10. 低压电器保护配合

  11. F-C设计计算规定:

电动机起动及自起动电压校验

(一)校验条件

1、电动机正常起动时的电压校验

(1)最大容量的电动机正常起动时,厂用母线的电压应不低于额定电压的80%。容易起动的电动机起动时电动机的端电压应不低于额定电压70%,对于起动特别困难的电动机,当制造厂有明确合理的起动电压要求时,应满足制造厂的要求。

(2)当电动机的功率(KW)为电源容量(KVA)的20%以上时,应验算正常起动时的电压水平。但对2MW及以下的6KV电动机,可不必校验。

成组电动机自起动时厂用母线电压的校验

(1)为了保证1类电动机的自起动,应对成组电动机自起动时的厂用母线电压进行校验。自起动时,厂用母线电压应不低于表4—2的规定。

表4—2 自起动要求的最低母线电压

名 称

自起动方式

自起动电压(%)

高压厂用母线


65~70

低压厂用母线

低压母线单独自起动

低压母线与高压母线串接自起动

60

55

(2)厂用工作电源可只考虑失压自起动,而厂用备用或起动/备用电源应考虑空载、失压及带负荷自起动三种方式。

1)空载自起动——备用电源空载状态自动投入失去电源的工作段时形成的自起动。

2)失压自起动——运行中突然出现事故低电压,当事故消除、电压恢复时形成的自起动。

3)带负荷自起动——备用电源已带一部分负荷,又自动投入失去电源的工作段时形成的自起动。

对于低压厂用变压器尚需校验高、低压厂用母线串接自起动的工况。

计算公式

1、电动机正常起动时的电压计算

电动机正常起动时的母线电压按式(4—22)计算,算式中各标么值的基准电压取0.38KV,3KV,6KV或10KV;对变压器基准容量取低压绕组的额定容量S2B(KVA)。

(4—22)

式中 Um——电动机正常起动时的母线电压(标么值);

Uo——厂用母线的空载电压(标么值),对无激磁调压变压器取1.05,

对有载调压变压器取1.1;

X——变压器的电抗(标么值);

一、用电设备电流估算:当知道用电设备的功率时可以估算它的额定电流:

三相电动机的额定电流按照电机功率的2倍算,即每千瓦乘以2就是额定电流的电流量,譬如一个三相电机的额定功率为10千瓦,则额定电流为20 安培。这种估算方式对三相鼠笼式异步电动机尤其是四级最为接近,对于其它类型的电动机也可以

单相220V电动机每千瓦电流按8A计算

三相380V电焊机每千瓦电流按2.7A算(带电动机式直流电焊机应按每千瓦2A算

单相220V电焊机每千瓦按4.5A算

单相白炽灯、碘钨灯每千瓦电流按4.5A算

注意:工地上常用的镝灯为380V电源(只有两根相线,一根地线),电流每千瓦按照2.7A算

二、不同电压等级的三相电动机额定电流计算

口诀:容量除以千伏数,商乘系数点七六。

说明:

(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、 380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。

三相二百二电机,千瓦三点五安培。

常用三百八电机,一个千瓦两安培。

低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。

高压六千伏电机,八个千瓦一安培。

2)口诀使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。

(3)口诀中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。

(4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。

(5)误差。由口诀 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。

三、测知电流求容量

测知无铭牌电动机的空载电流,估算其额定容量

口诀:

无牌电机的容量,测得空载电流值,

乘十除以八求算,近靠等级千瓦数。

说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。

四、已知变压器容量,求其各电压等级侧额定电流

口诀:

容量除以电压值,其商乘六除以十。

说明:适用于任何电压等级。

在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:

容量系数相乘求。

五、已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值

口诀:

配变高压熔断体,容量电压相比求。

配变低压熔断体,容量乘9除以5。

说明:

正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。

六、测知电力变压器二次侧电流,求算其所载负荷容量

口诀:

已知配变二次压,测得电流求千瓦。

电压等级四百伏,一安零点六千瓦。

电压等级三千伏,一安四点五千瓦。

电压等级六千伏,一安整数九千瓦。

电压等级十千伏,一安一十五千瓦。

电压等级三万五,一安五十五千瓦。

说明:

电工在日常工作中,常会遇到上级部门,管理人员等问及电力变压器运行情况,负荷是多少?电工本人也常常需知道变压器的负荷是多少。负荷电流易得知,直接看配电装置上设置的电流表,或用相应的钳型电流表测知,可负荷功率是多少,不能直接看到和测知。这就需靠本口诀求算,否则用常规公式来计算,既复杂又费时间。

七、测知白炽灯照明线路电流,求算其负荷容量

照明电压二百二,一安二百二十瓦。

说明:工矿企业的照明,多采用 220V的白炽灯。照明供电线路指从配电盘向各个照明配电箱的线路,照明供电干线一般为三相四线,负荷为4kW以下时可用单相。照明配电线路指从照明配电箱接至照明器或插座等照明设施的线路。不论供电还是配电线路,只要用钳型电流表测得某相线电流值,然后乘以220系数,积数就是该相线所载负荷容量。测电流求容量数,可帮助电工迅速调整照明干线三相负荷容量不平衡问题,可帮助电工分析配电箱内保护熔体经常熔断的原因,配电导线发热的原因等等。

八、已知380V三相电动机容量,求其过载保护热继电器元件额定电流和整定电流

口诀:

电机过载的保护,热继电器热元件;

号流容量两倍半,两倍千瓦数整定。

说明:

(1)容易过负荷的电动机,由于起动或自起动条件严重而可能起动失败,或需要限制起动时间的,应装设过载保护。长时间运行无人监视的电动机或3kW及以上的电动机,也宜装设过载保护。过载保护装置一般采用热继电器或断路器的延时过电流脱扣器。目前我国生产的热继电器适用于轻载起动,长时期工作或间断长期工作的电动机过载保护。

(2)热继电器过载保护装置,结构原理均很简单,可选调热元件却很微妙,若等级选大了就得调至低限,常造成电动机偷停,影响生产,增加了维修工作。若等级选小了,只能向高限调,往往电动机过载时不动作,甚至烧毁电机。

(3)正确算选380V三相电动机的过载保护热继电器,尚需弄清同一系列型号的热继电器可装用不同额定电流的热元件。热元件整定电流按“两倍千瓦数整定”;热元件额定电流按“号流容量两倍半”算选;热继电器的型号规格,即其额定电流值应大于等于热元件额定电流值。

九、测知无铭牌380V单相焊接变压器的空载电流,求算基额定容量

口诀:

三百八焊机容量,空载电流乘以五。

  单相交流焊接变压器实际上是一种特殊用途的降压变压器,与普通变压器相比,其基本工作原理大致相同。为满足焊接工艺的要求,焊接变压器在短路状态下工作,要求在焊接时具有一定的引弧电压。当焊接电流增大时,输出电压急剧下降,当电压降到零时(即二次侧短路),二次侧电流也不致过大等等,即焊接变压器具有陡降的外特性,焊接变压器的陡降外特性是靠电抗线圈产生的压降而获得的。空载时,由于无焊接电流通过,电抗线圈不产生压降,此时空载电压等于二次电压,也就是说焊接变压器空载时与普通变压器空载时相同。变压器的空载电流一般约为额定电流的6%~8%(国家规定空载电流不应大于额定电流的10%)。这就是口诀和公式的理论依据。

十、导线载流量的计算口诀(1)

导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。

1. 口诀 铝芯绝缘线载流量与截面的倍数关系

10下五,100上二,

25、35,四、三界,.

70、95,两倍半。

穿管、温度,八、九折。

裸线加一半。

铜线升级算。

说明 口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下:

1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、 185……

(1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下:

1~10 16、25 35、50 70、95 120以上

﹀ ﹀ ﹀ ﹀ ﹀

五倍 四倍 三倍 二倍半 二倍

现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的五倍。“100上二”(读百上二)是指截面100以上的载流量是截面数值的二倍。截面为25与35是四倍和三倍的分界处。这就是口诀“25、35,四三界”。而截面70、95则为二点五倍。从上面的排列可以看出:除 10以下及100以上之外,中间的导线截面是每两种规格属同一种倍数。

例如铝芯绝缘线,环境温度为不大于25℃时的载流量的计算:

当截面为6平方毫米时,算得载流量为30安;

当截面为150平方毫米时,算得载流量为300安;

当截面为70平方毫米时,算得载流量为175安;

从上面的排列还可以看出:倍数随截面的增大而减小,在倍数转变的交界处,误差稍大些。比如截面25与35是四倍与三倍的分界处,25属四倍的范围,它按口诀算为100安,但按手册为97安;而35则相反,按口诀算为105安,但查表为117安。不过这对使用的影响并不大。当然,若能“胸中有数”,在选择导线截面时,25的不让它满到100安,35的则可略为超过105安便更准确了。同样,2.5平方毫米的导线位置在五倍的始端,实际便不止五倍(最大可达到20安以上),不过为了减少导线内的电能损耗,通常电流都不用到这么大,手册中一般只标12安。

(2)后面三句口诀便是对条件改变的处理。“穿管、温度,八、九折”是指:若是穿管敷设(包括槽板等敷设、即导线加有保护套层,不明露的),计算后,再打八折;若环境温度超过25℃,计算后再打九折,若既穿管敷设,温度又超过25℃,则打八折后再打九折,或简单按一次打七折计算。

关于环境温度,按规定是指夏天最热月的平均最高温度。实际上,温度是变动的,一般情况下,它影响导线载流并不很大。因此,只对某些温车间或较热地区超过25℃较多时,才考虑打折扣。

例如对铝心绝缘线在不同条件下载流量的计算:

当截面为10平方毫米穿管时,则载流量为10×5×0.8═40安;若为高温,则载流量为10×5×0.9═45安;若是穿管又高温,则载流量为10×5×0.7═35安。

(3)对于裸铝线的载流量,口诀指出“裸线加一半”即计算后再加一半。这是指同样截面裸铝线与铝芯绝缘线比较,载流量可加大一半。

例如对裸铝线载流量的计算:

当截面为16平方毫米时,则载流量为16×4×1.5═96安,若在高温下,则载流量为16×4×1.5×0.9=86.4安。

(4)对于铜导线的载流量,口诀指出“铜线升级算”,即将铜导线的的截面排列顺序提升一级,再按相应的铝线条件计算。

例如截面为35平方毫米裸铜线环境温度为25℃,载流量的计算为:按升级为50平方毫米裸铝线即得50×3×1.5=225安.

对于电缆,口诀中没有介绍。一般直接埋地的高压电缆,大体上可直接采用第一句口诀中的有关倍数计算。比如35平方毫米高压铠装铝芯电缆埋地敷设的载流量为35×3=105安。95平方毫米的约为95×2.5≈238安。

三相四线制中的零线截面,通常选为相线截面的1/2左右。当然也不得小于按机械强度要求所允许的最小截面。在单相线路中,由于零线和相线所通过的负荷电流相同,因此零线截面应与相线截面相同。

十一、导线载流量的计算口诀(2)

铝芯绝缘导线载流量与截面的倍数关系

估算口诀:

二点五下乘以九,往上减一顺号走。

三十五乘三点五,双双成组减点五。

条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。

说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。

“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5× 9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25× 4。

“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从 50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍; 95、120mm”导线载流量是其截面积数的2.5倍,依次类推。

“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。

十二、电气施工验电巧用低压验电笔口诀

低压验电笔是电工常用的一种辅助安全用具。用于检查500V以下导体或各种用电设备的外壳是否带电。一支普通的低压验电笔,可随身携带,只要掌握验电笔的原理,结合熟知的电工原理,灵活运用技巧很多。

(1)判断交流电与直流电口诀

电笔判断交直流,交流明亮直流暗,

交流氖管通身亮,直流氖管亮一端。

  说明:

首先告知读者一点,使用低压验电笔之前,必须在已确认的带电体上验测;在未确认验电笔正常之前,不得使用。判别交、直流电时,最好在“两电”之间作比较,这样就很明显。测交流电时氖管两端同时发亮,测直流电时氖管里只有一端极发亮。

(2)判断直流电正负极口诀:

电笔判断正负极,观察氖管要心细,

前端明亮是负极,后端明亮为正极。

  说明:

氖管的前端指验电笔笔尖一端,氖管后端指手握的一端,前端明亮为负极,反之为正极。测试时要注意:电源电压为110V及以上;若人与大地绝缘,一只手摸电源任一极,另一只手持测民笔,电笔金属头触及被测电源另一极,氖管前端极发亮,所测触的电源是负极;若是氖管的后端极发亮,所测触的电源是正极,这是根据直流单向流动和电子由负极向正极流动的原理。

(3)判断直流电源有无接地,正负极接地的区别口诀

变电所直流系数,电笔触及不发亮;

若亮靠近笔尖端,正极有接地故障;

若亮靠近手指端,接地故障在负极。

  说明:

发电厂和变电所的直流系数,是对地绝缘的,人站在地上,用验电笔去触及正极或负极,氖管是不应当发亮的,如果发亮,则说明直流系统有接地现象;如果发亮在靠近笔尖的一端,则是正极接地;如果发亮在靠近手指的一端,则是负极接地。

(4)判断同相与异相口诀

判断两线相同异,两手各持一支笔,

两脚与地相绝缘,两笔各触一要线,

用眼观看一支笔,不亮同相亮为异。

  说明:

此项测试时,切记两脚与地必须绝缘。因为我国大部分是380/220V供电,且变压器普遍采用中性点直接接地,所以做测试时,人体与大地之间一定要绝缘,避免构成回路,以免误判断;测试时,两笔亮与不亮显示一样,故只看一支则可。

(5)判断380/220V三相三线制供电线路相线接地故障口诀

星形接法三相线,电笔触及两根亮,

剩余一根亮度弱,该相导线已接地;

若是几乎不见亮 ,金属接地的故障。

  说明:

  电力变压器的二次侧一般都接成Y形,在中性点不接地的三相三线制系统中,用验电笔触及三根相线时,有两根比通常稍亮,而另一根上的亮度要弱一些,则表示这根亮度弱的相线有接地现象,但还不太严重;如果两根很亮,而剩余一根几乎看不见亮,则是这根相线有金属接地故障。

电气设计中负荷计算方法

电力负荷计算方法包括:利用系数法、单位产品耗电量法、需要系数法、二项式系数法。我国一般使用需要系数法和二项式系数法,前者适用于确定全厂计算负荷、车间变电所计算负荷及负荷较稳定的干线计算负荷;后者用于负荷波动较大的干线或支线。在实际设计和实践中.电力负荷计算的有关计算系数和特征参数的选择都会影响电负荷计算结果,使其偏大、偏高。

电力负荷的正确计算非常重要,它是正确选择供电系统中导线、开关电器及变压器等的基础,也是保障供电系统安全可靠运行必不可少的重要一环。在方案设计与初步设计时,其电力负荷计算过小或过大,都会引起严重的后果。如果电力负荷计算过小,就会引起供电线路过热,加速其绝缘的老化;同时,还会过多损耗能量,引起电气线路走火,引发重大事故。而电力负荷计算过大,将会引起变压器容量过剩,以及供电线路截面过大,相应的保护整定值就会定得过高,从而降低了电气设备保护的灵敏度;与此同时,电力负荷计算过大还增加了投资,降低了工程的经济性。

一般说来,当电力负荷值大于实际使用负荷的10%时,变压器容量要增加11%一12%,电线电缆等有色金属的消耗量也要增加巧%一20%,同时还会增加变压器无功功率所造成的有功电力损耗。由此可见,电力负荷计算在供电设计中,特别是在确定变压器容量时所占据的重要位置。故正确地选择计算负荷方法与特征参数,对电气设计具有特别重要的意义。

电力负荷计算方法概述

电力负荷的变化是受多种因素制约的,难以用简单的计算公式来表示。在实际的工程计算工作中,通常采用的方法有需要系数法、利用系数法、二项式系数法、单位产品耗电量法等进行工业企业供电设计中的电力负荷计算。

1.利用系数法

以平均负荷为基础,利用概率论分析出最大负荷与平均负荷的关系。

2.单位产品耗电量法

在初步设计阶段对供电方案作比较时,可根据车间的单位产品耗电定额,产品的年产量和年工作小时数来估算。

3.二项系数法

考虑用电设备数量和大容量设备对计算负荷的影响的经验公式。

由于在一条干线上或一个车间里,当有多组性质不同的用电设备时,应根据其工作性质划分成几个用电设备组(一个组的用电设备性质相同)。所以负荷计算应先分单组计算,再进行多组的总计算,计算公式分别如下:

(1)单组用电设备的计算负荷

同一组用电设备的工作性质相同,而其中各机器名称和容量不一定相同。

(2)多组用电设备的计算负荷

在一组用电设备中,考虑了x台最大设备最大负荷重叠的因素,多组用电设备中不可能所有各组最大设备的最大负荷都重叠,一般只考虑一组最大的附加负荷即可。

4.需求系数法

需求系数法不考虑大容量设备最大负荷造成的负荷波动及用电设备的容量和台数,适用于确定全厂计算负荷、车间变电所计算负荷及负荷较稳定的干线计算负荷。

在一条干线上枝接性质不同的几组用电设备时,需在分组计算的基础上再进行多组的总负荷计算。

(1)单个用电设备的计算负荷

确定单个用电设备的计算负荷,目的是为选择支线截面提供依据,应以满负荷运行时的输人功率作为计算负荷。

(2)用电设备组的计算负荷

一个车间有很多台用电设备,在进行负荷计算时,要将用电设备按需要系数表上的分类方法详细地分成若干组,即将工艺性质相同的且需要系数相近的用电设备合并成组,然后进行各用电设备组的负荷计算。

影响电负荷计算结果偏大、偏高的几种因素与对策

从设计到运行所得到反馈可以发现下述5个问题。

1.分组需要系数戈选用的问题和对策

现行设计手册中推荐的一些行业的用电设备分组“需要系数”是建立在偏高基础上给定的,是考虑企业发展余量过大而造成的结果。

另一种情况是设计人员缺乏有关行业分组需要系数,又缺乏必要的调研和考察,仅凭经验选用系数时宁大勿小,往往是高估高套而造成计算结果偏大和偏高。

对于以上现象可以采取以下对策。

1)利用设计手册中推荐的戈值时,宜采用其“平均值”或根据具体情况采用“下限”,一般不宜采用“上限”。

2)当缺乏行业计算系数时,应进行同类型或近似行业调查研究结果,从而正确选用戈值。

2.需要系数法中单台设备计算负荷氏的取值有以下不同

1)连续运行的电动机,凡就是其铭牌上规定的额定功率。

2)断续重复工作制电动机,应根据实际情况选择相应的负荷持续率下的额定功率计算设备功率。

3)对于电焊机、电炉、电热器和电灯的额定功率,就是其输人功率。

3.最大同时使用系数选用的问题

在确定车间变电所或全厂总变电所的计算负荷时,也就是在具有多个用电车间或用电设备组时,其计算容量的总和,需要考虑乘以有功与无功最大同时使用系数k:w与k:。

据资料介绍,同时系数基本上是从国外资料上引用的,而这些国家往往电力工业比较发达,能源比较富裕,所以同时使用系数往往偏高。

所以在选用“同时使用系数”时可以根据不同行业的特点,酌情把同时使用系数降低到

0.9一0.75,这样可以减少计算负荷5%一15%,由此可见,降低“同时使用系数”是降低总计算负荷的关键。

4.选择原则

适当地采用计算方法是降低计算负荷的根本性措施,具体选择原则如下:

1)如前所述,在实际工程计算中,利用系数法与单位产品耗电量法这两种方法一般不采用。

利用系数法虽然有一定的理论根据,但因要确定的系数较多,计算步骤复杂,公式中的“最大系数气”与“利用系数k,”的数据目前也较缺乏,因此,通常在工作中多不采用这种计算方法。

单位产品耗电量法求出的用电设备负荷可能与实际负荷相差较大,所以在缺乏正式的用电设备容量时,还要按“需要系数法”重新进行计算。以尽可能取得更接近实际的计算负荷,作为选择配电设备和导线的依据。

2)需要系数法比较简便,因而广泛使用,但当用电设备台数少而功率相差悬殊时,需要系数法的计算结果往往偏小,故不适用于低压配电线路计算,而适用于计算变、配电所的负荷。

3)二项式法考虑两种因素:①平均负荷。②x台最大设备的最大负荷重叠造成的附加负荷,以弥补需要系数法计算结果在上述情况下偏小的不足。

由于二项系数法不仅考虑了用电设备最大负荷时的平均功率,而且考虑了少数容量最大的设备投人运行时对总计算负荷的额外影响。所以二项式法比较适合于确定设备台数较少而容量差别较大的低压干线和分支线的负荷计算。但是二项式计算系数(经验系数)b、c和x的值,缺乏充分的理论依据,而且这些系数也只适于机械加工工业,其他行业缺乏这方面数据,从而使其引用受到一定局限。

因此,对于负荷波动较大的干线或支线采用二项系数法确定计算负荷较为准确。在确定车间变电所和全厂总负荷计算时,则通常不采用,还是采用“需要系数法”比采用“二项式法”更接近实际用电情况。

5.用电设备脱离实际而偏高偏大的问题

发现上述现象,应与工艺人员研究解决,否则在负荷计算时,应在选用分组“需要系数”或“同时使用系数”时采取降低计算系数的办法,使负荷计算值降下来,以保证合理地选用变压器等供配电设备,做到既安全适用又节约电能。

结论

综上所述,在电气设计实践中,通常采用的计算负荷方法中单位产品耗电电量法和利用系数法通常不使用,需要系数法适用计算变、配电所的负荷,二项式系数法符合波动较大的干线或支线的负荷计算,所以计算负荷方法的正确选用是根本,直接影响到负荷计算的结果。同时是否合理选用负荷计算中特征参数,也将使计算负荷偏大或偏小。

所以对各种不同类型电力负荷选择合适的计算方法,结合相应对策进行修正,可使计算结果明显地降低,既保证了安全可靠性又获得节能、节资的经济效益。


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

国内网站建设费用联盟

© 2017-2018 cqydfl.com